Clustering Noisy Signals with Structured Sparsity Using Time-Frequency Representation
نویسندگان
چکیده
We propose a simple and efficient time-series clustering framework particularly suited for low Signalto-Noise Ratio (SNR), by simultaneous smoothing and dimensionality reduction aimed at preserving clustering information. We extend the sparse K-means algorithm by incorporating structured sparsity, and use it to exploit the multi-scale property of wavelets and group structure in multivariate signals. Finally, we extract features invariant to translation and scaling with the scattering transform, which corresponds to a convolutional network with filters given by a wavelet operator, and use the network’s structure in sparse clustering. By promoting sparsity, this transform can yield a low-dimensional representation of signals that gives improved clustering results on several real datasets.
منابع مشابه
Sparse Time-Frequency Representation for Signals with Fast Varying Instantaneous Frequency
Abstract: Time-frequency distributions have been used to provide high resolution representation in a large number of signal processing applications. However, high resolution and accurate instantaneous frequency (IF) estimation usually depend on the employed distribution and complexity of signal phase function. To ensure an efficient IF tracking for various types of signals, the class of complex...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA novel fuzzy clustering algorithm using observation weighting and context information for reverberant blind speech separation
Time–frequency masking has evolved as a powerful tool for tackling blind source separation problems. In previous work, mask estimation was performed with the help of well-known standard cluster algorithms. Spatial observation vectors, extracted from a set of microphones, were grouped into separate clusters, each representing a particular source. However, most off-the-shelf clustering methods ar...
متن کاملA Time-Frequency Domain Underdetermined Blind Source Separation Algorithm for MIMO Radar Signals
This paper considers the underdetermined blind separation of multiple input multiple output (MIMO) radar signals that are insufficiently sparse in both time and frequency domains under noisy conditions, while traditional algorithms are usually applied in the ideal sparse environment. An effective separation method based on single source point (SSP) identification and time-frequency smoothed l0 ...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.05214 شماره
صفحات -
تاریخ انتشار 2015